The expansion of agrarian societies towards the north – new evidence for agriculture during the Mesolithic/Neolithic transition in Southern Scandinavia

Lasse Sørensen a,b,*, Sabine Karg b

a The National Museum, Danish Prehistoric Collections, Frederiksholms Kanal 12, DK-1220 Copenhagen K, Denmark
b University of Copenhagen, Saxo Institute, Archaeology, Njalsgade 80, DK-2300 Copenhagen S, Denmark

A R T I C L E I N F O
Article history:
Received 16 March 2012
Received in revised form 13 July 2012
Accepted 14 August 2012

Keywords:
Neolithisation
Radiocarbon dates
Cereal grains
Domesticated animals
Flint axes
Southern Scandinavia

A B S T R A C T
Radiocarbon dates on new evidence of agriculture in Southern Scandinavia document the introduction of domesticated animals and cereal cultivation during the period 4000–3700 cal BC. The speed of the expansion was so rapid that smaller groups of pioneering farmers from Central Europe must have been involved in this process. These farmers cleared the forest and settled on inland sites. For reasons of poor preservation conditions for organic finds, bioarchaeological evidence from these inland sites is rare. However, the small amounts of available evidence clearly points to a dominating agrarian subsistence supplemented by hunting and fishing. Furthermore, the distribution of archaeological stray finds, such as pointed butted flint axes, is in certain cases located around easy accessible inland flint mines, where pioneering farmers settled on easily-workable arable soils.

Evidence from contemporaneous coastal and lake shore sites show, on the other hand, a slow and gradual process of change towards agrarian subsistence, thus supporting the availability model. Our results support the theory of cultural dualism, assuming the migration of smaller groups of farmers from Central Europe. The transition towards an agrarian way of life probably happened during a complex and continuous process of migration, integration and gradual assimilation between pioneering farmers and local hunter–gatherers.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The transition process from hunters and gatherers to farmers has been the subject of debate for more than a century in Southern Scandinavia, including Northern Germany, Denmark and Southern and Western Sweden (Fischer and Kristiansen, 2002) (Fig. 1). The entrenched discussion concentrates on two hypotheses: whether agriculture was introduced rapidly by migrating agrarian societies (Becker, 1948; Lichardus, 1976; Skoglund et al., 2012: 466ff) or whether gradual adaptation by indigenous populations occurred (Zvelebil and Rowley-Conwy, 1984; Price, 2000; Fischer, 2002: 341ff; Andersen, 2008: 73; Melchior et al., 2010: 6). Many researchers now tend to favour a gradual transition towards agriculture over the introduction of the entire Neolithic package, based on data that originate from coastal or lake shore settlements, thus neglecting important evidence from inland sites located on easily-workable arable soils. The objective of this study is to present some newly discovered evidence of agriculture from several transitional coastal and inland sites, and to discuss whether these represent a gradual introduction of agriculture during the Late Ertebølle period (4500–4000 cal BC), a swift application of the entire package during the Early Neolithic I period (4000–3500 cal BC), or both.

2. Material and methods

Archaeological material from kitchen middens and sites located close to larger lakes has so far formed the basic information for research on the neolithisation process. All these sites were more easily detectable and have excellent preservation conditions for organic material and artifacts, whereas the inland sites are more difficult to find and have only poorly preserved organic finds (Fig. 2). The empirical data from these inland sites, normally located on easily-workable arable soils at least 1 km from the coast, is absent in discussions of the introduction of agriculture (Fig. 3). However, during the last twenty years a series of rescue and research excavations of sites dated to the Late Ertebølle – Early Neolithic transition has resulted in new agrarian evidence from both coastal and especially from a few important inland sites (Hartz and Lübke, 2004; Andersen, 2008; Melchior et al., 2010; Bauketopp et al., 2011).
Price and Gebauer, 2005; Fischer and Gotfredsen, 2006: 38; Rosenberg, 2006; Andersen, 2008: 67; Hallgren, 2008; Hirsch et al., 2008: 11ff; Skousen, 2008; Terberger et al., 2009; Hadevik and Steinke, 2009; Nielsen, 2009; Rudebeck, 2010: 85ff; Mischka, 2011: 742ff). This article focuses on agrarian evidence from these sites, including plough marks, cereals, pollen evidence, bone material from domesticated animals, and archaeological finds, such as stone querns and pointed butted flint axes, to gain new knowledge of the neolithisation process in Southern Scandinavia. Methodological problems are taken into consideration and will also be discussed.

2.1. 14C dates, methodological restrictions

The presented 14C dates were directly made on charred cereals and bones from domesticated animals. All dates were calibrated with the OxCal v4.1.7 program and given in “calibrated years before Christ” (cal BC), with a two standard deviation range. When comparing 14C dates from different regions of Southern Scandinavia, we have to consider that two wiggles have been observed on the 14C curve. The first one is located from 4200 to 4050 cal BC and the second one from 3950 to 3790 cal BC, thus limiting the time resolution (Reimer et al., 2009). The chronology could become narrower if several 14C dates are made on charcoal from closed Early Neolithic contexts and subjected to a Bayesian analysis (Buck et al., 1996; Bayliss et al., 2007; Whittle, 2007: 377ff).

2.2. Records for cereal cultivation

Plough marks are one of the most significant forms of evidence for agriculture in prehistoric times (Fries, 1995). Furrows were found beneath numerous Neolithic grave mounds, giving them...
a probable terminus ante quem (Thrane, 1989). Until now, no 14C dates of Neolithic plough marks have been produced in Southern Scandinavia (Beck, 2009: 7ff; Mischka, 2011: 745ff). Other evidence for agriculture is the form of archaeobotanical material that can be recovered either by analysing soil samples or by studying plant impressions in pottery. The most abundant cereals recorded for the Early Neolithic in Southern Scandinavia are emmer ($Triticum dicoccum$), einkorn ($Triticum monococcum$), naked barley ($Hordeum vulgare/nudum$), bread wheat ($Triticum aestivum/compactum$), and possibly spelt ($Triticum spelta$) (Robinson, 2003; Gustafsson, 2004; Hallgren, 2008: 118; Andreasen, 2009: 34; Larsson and Broström, 2011: 197; Kirleis et al., 2012). Hulled wheat species need to be roasted in order to remove their glumes, which might explain why these species are often overrepresented in the archaeobotanical record (Hillman, 1981: 123ff). Cereal grains do not necessarily indicate cultivation of crops as they could have been imported. Threshing waste is, on the other hand, a more secure proof for on-site processing (Skousen, 2008: 124; Westphal, 2009: 89ff). Cereal impressions in ceramics are difficult to quantify, as wheat often seems to be overrepresented because it is easier to identify (Engelmark, 1992: 369).

Cereal cultivation could also be revealed by pollen analysis, but the investigations in Southern Scandinavia lack absolute dating (Aaby, 1985, 1986; Odgaard, 1994; Andersen, 1995; Robinson, 2003; Regnell and Sjögren, 2006: 120ff). The profiles are mostly taken from smaller lakes or bogs, thus showing the environmental change on a very local scale, whereas pollen diagrams taken from larger lakes reflect changes within the landscape covering a radius of 5–10 km. Cereal pollen evidence is rarely detected because wheat and barley are being self-pollinated species, which means that the
pollen does not spread over long distances. The pollen stays within the ears, until the cereal is threshed. These observations are confirmed by experiments showing a very low dispersion of wheat pollen only 10 m away from the crop field (1.4%), and rather high values (26.6%) at the actual threshing place (Diot, 1992). Additional evidence for agriculture is given by pollen analysis in buried soils underneath long barrows dated between 3800 and 3500 cal BC (Andersen and Rasmussen, 1993: 153ff).

2.3. Faunal assemblages

As noted above, coastal, lake shore and inland sites show different preservation conditions for organic material. This fact needs to be considered when comparing the assemblages with each other. The problems with the faunal assemblages are of a taphonomic, taxonomic and stratigraphic character.

The counting method used for bone material varies between the different sites thus influencing the results: using the NISP (number of identified specimens) instead of EMNI (estimated minimum number of individuals) can lead to an overrepresentation of the calculated animals (Marshall and Pilgram, 1993; Lyman, 1994: 102ff). Both methods were applied at a number of Late Mesolithic and Early Neolithic faunal assemblages in Southern Scandinavia (Fig. 4, Table S1). Nevertheless, both methods show a rather low frequency of domesticated animals in general. Very few faunal assemblages were investigated by using EMNI, which forces us to work with NISP. This is particularly problematic when dealing with burnt bones, as at the sites of Måhärldalen and Bergslagen in Sweden (Hallgren, 2008: 124ff). At most sites only the percentage of the identified mammal bones is given, thus excluding the unidentified bones, as well as the fish and bird bones.

The taxonomic problems occur during the identification of bones of domesticated animals. It can in certain cases be challenging, as in the case with bones from smaller individuals of aurochs (Bos primigenius) and domesticated cattle (Bos taurus) (Hartz and Lübke, 2004; Noe-Nygaard et al., 2005; Price and Noe-Nygaard, 2009: 205ff). It is important to mention that aurochs and domestic cattle lived contemporaneously in Northern Germany and Jutland, and became extinct on the Danish islands during the early Atlantic period (7200–6000 cal BC) and middle Atlantic in Southern Sweden (6000–5000 cal BC) (Aaris Sørensen, 1998; Noe-Nygaard et al., 2005). The large amount of domesticated cattle in the sites of Wangels (Fig. 2, nr. 6) and Siggeneben-Süd (Fig. 2, nr. 8) need to be interpreted more critically, because some of them might be small individuals of aurochs (Heinrich, 1999: 45) (Fig. 12). Furthermore, the separation of domesticated pigs (Sus domesticus) from wild boar (Sus scrofa) is as well problematic. The determination is often based on the fact, that domesticated pigs are smaller than wild boars, which is reflected in the measurements of the skull and antemorium breadth of the M3 (Magnell, 2005). For this reason, we have placed wild boar and domesticated pigs together in a separate category within the faunal assemblages, as is done with the bone finds of sheep (Ovis aries) and goat (Capra hircus). Generally sheep and goat bones tend to be underrepresented, due to a higher degree of fragmentation, thus making it harder to distinguish them from other bovidae species.

Moreover, many faunal assemblages are retrieved from sites with complex stratigraphies, and where it is difficult to separate layers dated to the Late Mesolithic from the Early Neolithic ones (Jennbert, 1984; Fischer, 2002: 341ff; Hartz and Lübke, 2004: 119ff; Price and Gebauer, 2005).

2.4. Archaeological records

Pointed buttet flint axes were used for clearing the forest, and quern stones for grain processing. By investigating the 14C dates of the archaeological contexts, in which these artifacts were found, it is possible to date their introduction to Southern Scandinavia. The distribution of the pointed buttet flint axes is shown (Fig. 16), and their typology is tested with 14C dates. The pointed buttet axes were, based on typological characteristics, divided into three distinct types (Fig. 5). The majority was detected as stray finds in various parishes.

3. Definitions and theories regarding the introduction of farming

In the discussion of the neolithisation process in Southern Scandinavia different definitions of hunter—gatherers and farmers are used, and no consensus has been reached yet (Becker, 1948; Troels-Smith, 1954: 5ff; Jennbert, 1984; Larsson, 1984; Nielsen, 1984: 96ff; Madsen, 1987: 229ff; Fischer, 2002: 343ff; Skak-Nielsen, 2003: 1ff; Klassen, 2004; Johansen, 2006: 201; Hartz et al., 2007: 567ff; Larsson, 2007: 955ff; Andersen, 2008: 67ff; Hallgren, 2008; Brinch Petersen and Egeberg, 2009: 447ff; Schülke, 2009: 217ff; Rowley-Conwy, 2011: 431ff; Price and Bar-Yosef, 2011: 163ff). The presence of bones from domesticated animals has often been interpreted as a distinct feature for a farming society, regardless of the fact, that the faunal material is generally dominated by remains of wild animals (Fischer, 2002; Price and Gebauer, 2005). Nevertheless, the limited number of domesticated animals

Fig. 4. Faunal assemblages investigated by using the NISP (number of identified specimens) and EMNI (estimated minimum number of individuals) methods, based on data from Table S1 (Noe-Nygaard, 1995: 76ff; Gottfredsen, 1998: 95; Hede, 2005: 94).

Please cite this article in press as: Sørensen, L., Karg, S., The expansion of agrarian societies towards the north – new evidence for agriculture during the Mesolithic/Neolithic transition in Southern Scandinavia, Journal of Archaeological Science (2012), http://dx.doi.org/10.1016/j.jas.2012.08.042
could suggest the beginning of herding activities at the transitional coastal sites. Hunting, gathering and fishing is practised by both hunter–gatherers and farmers, of course. What separates farmers from hunter–gatherers in a transitional context is crop cultivation and managing husbandry all year round. Firstly, cultivation requires a whole new set of techniques, including slash and burn activities for opening the landscape, preparing fields, sowing and growing crops, grain processing and storing seeds. Secondly, keeping domesticated animals all year round requires storage of winter fodder (Troels-Smith, 1984; Haas and Rasmussen, 1993). We consider that Late Mesolithic or Early Neolithic hunter–garacters kept a small number of domesticated animals for meat reserves and/or prestige reasons (Louwe Kooijmans, 2009).

Two main theories have until now dominated in the discussion of the neolithisation process in Southern Scandinavia: migration of Central European farmers to Northern Europe or the gradual transition of the indigenous hunter–gatherers (Becker, 1948; Troels-Smith, 1954: 5ff; Lichardus, 1976; Fischer, 2002; Price and Gebauer, 2005). Many researchers have accepted the availability model of the transition from hunting to farming, proposed by Zvelebil and Rowley-Conwy (1984: 107ff). The model seems to be valid, when applied to the archaeological evidence from the numerous coastal or lake shore sites in Southern Scandinavia (Andersen, 2008: 73; Fischer and Gotfredsen, 2006: 35ff); however, the evidence from the few inland sites shows a different picture.

4. Results

4.1. Evidence for cereal cultivation and harvesting

Radiocarbon dates made directly from charred cereal grains of emmer, einkorn, bread wheat and naked barley from Early Neolithic sites in Southern Scandinavia show the synchronous introduction of these cultivars within 300 years (4000–3700 cal BC) in the entire region of Southern Scandinavia, stretching up to Bohuslän in Western Sweden, and Uppland in Middle Sweden (Fig. 6, Table S2).

The archaeobotanical assemblages originate mainly from Early Neolithic inland sites. Generally, the number of identified cereal grains is very low, with the exception of the material from Stensborg (Fig. 3, nr. 84) (Inline Supplement Fig. S1, Table S3), where more than 3000 grains were identified (Larsson and Broström, 2011: 197). Larger botanical assemblages are also reported from several pits at the site of Almhov (Fig. 3, nr. 53), the grains (and chaff) are dominated by emmer and bread wheat (Gustafsson, 2004; Rudebeck, 2010: 156). Recent botanical studies from Early Neolithic sites in Northern Germany show that naked barley and emmer are the dominant corn species, thus showing possible regional differences in the cultivation of cereals (Kirleis et al., 2012: 224ff). Generally it is difficult to interpret any patterns and trends within the different individual assemblages from the Early Neolithic I period (Inline Supplement Fig. S1, Table S3). The emmer from the site of Stensborg is overrepresented, when adding up the assemblages, because this is the largest assemblage in Southern Scandinavia. If we exclude the Stensborg material in our calculation, the assemblages consist of 873 identified charred grains, dominated by emmer and bread wheat. However, the 346 identified grain impressions from pottery from mainly Early Neolithic inland sites show a more equal distribution of the cereal species with a dominance of naked barley and einkorn (Inline supplement Fig. S2, Fig. 7, Table S4). A few grain impressions are of cardinal importance, as they were found in Late Ertebølle potsherds from the coastal sites of Løddesborg (Fig. 2, nr. 27) and Vik (Fig. 2, nr. 28) in Scania (Jennbert, 1984). Unfortunately, the sites contain intermixed layers of Late Ertebølle and Early Funnel beaker ceramics which both have the same coarse tempering and thickness (Koch, 1987, 107ff). Currently, there is no additional archaeological evidence supporting any kind of cereal cultivation during the Late Mesolithic in Southern Scandinavia.

Fig. 5. Drawing of pointed butted flint axes of type 1, 2 and 3. Type 1 has an oval cross section. Type 2 has a three-sided cross-section. Type 3 has a four-sided cross section. After: Nielsen, 1977: 66.
Threshing waste from emmer wheat was used as tempering material in clay discs found in several pits dated to the Early Neolithic, as for example at Lisbjerg Skole near Århus (Fig. 3, n.r. 31, Skousen, 2008: 124). Hazelnut shells from the pits (A-2087, A-2092, Fig. 6).

Please cite this article in press as: Sørensen, L., Karg, S., The expansion of agrarian societies towards the north – new evidence for agriculture during the Mesolithic/Neolithic transition in Southern Scandinavia, Journal of Archaeological Science (2012), http://dx.doi.org/10.1016/j.jas.2012.08.042
and A2165) date to 5190 ± 90 BP (4251–3785 cal BC, AAR-8542) and to 4975 ± 55 BP (3942–3651 cal BC, AAR-9225). Straw remains and chaff imprints are also found in clay discs from the Early Neolithic site of Store Valby (Fig. 3, nr. 48), Becker, 1954: 134ff; Helbæk, 1954: 188ff). Additional evidence for crop processing is recorded from a few Early Neolithic inland sites all over Southern Scandinavia, such as Limensgård (Fig. 3, nr. 52) and Stensborg (Fig. 8, Table S5), Rastorf LA 6 (Fig. 3, nr. 125) and Oldenburg-Dannau LA 77 (Fig. 3, nr. 126) (Robinson, 2003: 145ff; Larsson and Broström, 2011: 197; Kirleis et al., 2012: 226ff) (Fig. 8, Table S5). Generally, evidence for cereal grains and crop processing is almost exclusively related to Early Neolithic inland sites (Figs. S1, S2, Table S3, S4), in contrast to the numerous coastal or lake shore sites, where clear evidence for cultivation activities seems to be missing. Only very few impressions of cereal grains in ceramics are documented from the kitchen midden at Bjørnsholm (Fig. 2, nr. 14), Norsminde (Fig. 2, nr. 16), and the lake shore site Muldbjerg I (Fig. 3, nr. 36), whereas actual grains of naked barley, bread wheat and emmer are recorded in the Early Neolithic layers of the Visborg kitchen midden (Fig. 3, nr. 12) (Helbæk, 1954: 188ff; Robinson, 1999; Andersen, 2008). Currently no threshing waste has been observed on any coastal or lake shore site. The strongest evidence of crop processing is reported from the long barrow located near the Bjørnsholm kitchen midden, where pollen of cereals was found (Andersen, 1992: 59ff). The area surrounding Bjørnsholm is one of the places that is located near sandy and easily-workable arable soils.

Crop processing activities can also be revealed by the presence of quern stones, mostly known from Early Neolithic inland sites all over Southern Scandinavia from the beginning of the 4th millennium BC onwards (Hallgren, 2008, 211; Nielsen, 2009: 14; Rudebeck, 2010: 112; Ravn, 2012: 145) (Fig. 8, Table S5). Plough marks below the long barrow of Højensvej 7 (Fig. 3, nr. 33) near Egense on the island of Funen covered an area of 85 square metres (Beck, 2009: 7ff; Beck, in press). Some of the plough marks were cut by a pit, which was dated by a burnt hazelnut shell to 4900 ± 40 BP (3770–3637 cal BC, POZ-28068), thus proving a very early date (Fig. 8), currently the earliest from Northern Europe. Plough marks were also detected below the long barrow of Flintbek LA 3 in Schleswig-Holstein (Fig. 3, nr. 123). These plough marks were, based on stratigraphic observations, assigned to the forth building phase of the long barrow (Mischka, 2011: 745f). Charcoal found in grave E was dated to 4794 ± 30 BP (3646–3522 cal BC) and 4539 ± 30 BP (3365–3104 cal BC) (Fig. 8). Plough marks of more limited extent were detected below a number of long barrows in Jutland and Funen. Notice should definitely be taken of this clear evidence for agricultural activity in future excavations (Jørgensen, 1977: 7ff; Fischer, 1980: 23ff; Ebbesen, 1992: 96; Andersen, 2009). The cultivation of large fields using an ard, in order to get maximum yield out of the soil, was obviously a technique, already being applied from the beginning of the Early Neolithic in Southern Scandinavia. Moreover, use-wear traces on sickles from Early Neolithic sites indicate cereal harvesting activities (Juel Jensen, 1994).

4.2. Evidence of domesticated animals

Domesticated dogs (Canis familiaris) are currently the only clear evidence for the presence of domesticated animals in Late Ertebølle contexts (Fig. 12, Table S8) (Rowley-Conwy, in press).

Bones of domesticated cattle are recorded all over Southern Scandinavia for the time period 4000–3700 BC, more or less synchronic with the evidence for cereal cultivation (Fig. 9, Table S6). Molecular genetic analysis can now prove that the presumed domesticated cattle from Rosenhof LA 58 and 83 (Fig. 2, nr. 7), dated to 4700 cal BC, were small aurochsen (Hartz and Lübke, 2004; Noe-Nygaard et al., 2005). This might also be the case for the records of domesticated cattle from Hindbygården in Scania (Fig. 3, nr. 62) 5570 ± 110 BP (4702–4173 cal BC, Ua-1575) (Hadevik, 2009: 82ff). Another early cattle find, one tooth from Lollikhuse (Fig. 2, nr. 4), is dated to 5890 ± 55 BP (4929–4612 cal BC, AAR-7410-2). The find is probably a ‘souvenir’ showing contact with farming societies in

![Fig. 7. Comparison of charred cereals and imprints of cereals in pottery from the Early Neolithic I based on data from Tables S3 and S4 (Mathiassen, 1940; Helbæk, 1954; Hjelmqvist, 1976; Jørgensen, 1976, 1981; Jennbert, 1984; Larsson, 1984; Andersen, 1991; Nielsen, 1984, 1994; Robinson, 1996, 1999, 2003; Gustafsson, 2004; Hallgren, 2008; Skousen, 2008; Rudebeck, 2010; Larsson and Broström, 2011).](http://dx.doi.org/10.1016/j.jas.2012.08.042)
Central Europe (Sørensen, 2005: 305). Early cattle bones from Smakkerup Huse (Fig. 2, nr. 5) support the idea that Ertebølle hunter and gatherers had access to domesticated animals (Price and Gebauer, 2005). These bones derive from stratified refuse layers that are dated to 5059/C6 68 BP (3981±370 cal BC. AAR-3316) and 5060/C6 61 BP (3968±3711 cal BC. AAR-3317). It has to be mentioned that the site was eroded during the Subboreal period, and it cannot be ruled out, that the cattle bones could belong to an Early Funnel Beaker occupation. This means that the evidence for domestic cattle dated to clear Late Ertebølle contexts is very weak. The fact that some Late Ertebølle hunter-gatherer might have kept a few cows does not allow us to define them as farmers. Although we could be dealing with a transitional phase during the Late Ertebølle and Early Neolithic with herding activities of cows, sheep and goats.

Evidence of sheep and goat from Jutland, Zealand and Gotland is dated to 4000±3700 cal BC, in contrast to Northern Germany, where they appear at least one century earlier, and to Western Sweden, where they date to a few centuries later (Fig. 10, Table S7). The few dates available suggest that sheep and goat were introduced as part of the Neolithic package together with cereals and cattle (Price and Noe-Nygaard, 2009: 206ff). Domesticated pigs were probably also a part of this package (Fig. 11, Table S7). Recently some probable domesticated pigs were found in a pit from the Early Neolithic site of Almhov in Scania, dated to 4960±50 BP (3937–3645 cal BC. Ua-22166) (Rudebeck, 2010, 112ff). Other possible domesticated pigs were identified in many Early Neolithic contexts (Fig. 13, Table S8). Especially the measurements of length and breath of the calcaneus (heel bone) from wild boar and domestic indicate the presence of a few probable domesticated pigs in the transitional site of Åkonge (Fig. 3, nr. 18) (Gotfredsen, 1998: 98). However, the identification of domesticated pigs causes problems due to possible interbreeding with wild boars during the Mesolithic and Neolithic transition in Southern Scandinavia. The problem could be resolved by future DNA analysis. Presently there is no secure archaeological evidence of domesticated pig earlier than 3700 cal BC in Southern Scandinavia, which has to do with the lack of direct 14C dates and problems with identification.

The coastal and lake shore sites dated to the Mesolithic/Neolithic transition and Early Neolithic I, are characterized by their low number of identified bones of domesticated animals (Fig. 12, Table S8). The result is interpreted as a clear evidence for a continuation of the hunter-gatherer lifestyle at these sites, where the faunal remains are showing all year round habitation (Bratlund, 1993; 101; Noe-Nygaard, 1995; 76; Lekberg, 1997; Gotfredsen, 1998; Segerberg, 1999; Enghoff, 2011) (Fig. 13, Table S8). A different picture emerges, when investigating the faunal assemblages from the inland sites located on easily-workable arable soils. Here the percentage of domesticated animals is higher; thus
supporting the interpretation that agrarian subsistence was more important at these sites (Fig. 13, Table S8). Currently no systematic investigations have been made on the faunal indicators of seasonality on any of these sites (Nielsen, 1984:110; Koch, 1998:244; Sjögren, 2003:129; Hallgren, 2008; Welinder et al., 2009:142).

During Early Neolithic II and Middle Neolithic I, there is a more equal distribution of domesticated animals across the inland and coastal/lake shore sites although there are coastal sites like Sølager (Fig. 2, nr.17), where domesticated animals are rare (Fig.14, Table S8) or dominant as observed on the site Grottan (Fig. 3, nr. 124), thus showing different economic strategies. At the beginning of the middle Neolithic, a few sites still show a low number of identified bones of domesticated animals, such as the lake site Storelyng VI (Fig. 3, nr. 119). Red and roe deer are the dominant species, characterizing the sites as specialized hunting camps (Skaarup, 1973; Koch, 2003: 209ff). Generally the faunal indicators of seasonality on the Early Neolithic II and Middle Neolithic I–II hunting sites and agrarian inland sites contains evidences of a habitation during spring, summer and autumn, whereas the winter months have been more difficult to identify (Madsen et al., 1900: 135; Troels-Smith, 1954: 23; Nobis, 1962: 18; Skaarup, 1973; Møhl, 1975: 210; Madsen, 1978: 179; Johansson, 1979: 82; Andersen, 1981; Rowley-Conwy, 1984; Nyegaard, 1985: 447ff; Koch, 1998: 246; Nilsson, 2003: 294; Magnell, 2007: 51ff; Skousen, 2008: 155; Enghoff, 2011).

Table S8: Faunal Indicators of Seasonality

<table>
<thead>
<tr>
<th>Location</th>
<th>Seasonal Indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern Germany</td>
<td></td>
</tr>
<tr>
<td>AAR-4998 Wangelis</td>
<td>505 (5570+/-45 BP)</td>
</tr>
<tr>
<td>KIA-9824 Wangelis</td>
<td>505 (5570+/-53 BP)</td>
</tr>
<tr>
<td>AAR-4999 Rosenhof</td>
<td>58 (510+/-50 BP)</td>
</tr>
<tr>
<td>AAR-4995 Siggeleben-Sud</td>
<td>465+/-50 BP</td>
</tr>
<tr>
<td>AAR-4998 Siggeleben-Sud</td>
<td>465+/-50 BP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Denmark</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AAR-7410-2 Løkshuse</td>
<td>500 (5890+/-55 BP)</td>
</tr>
<tr>
<td>AAR-6944 Knoebebo</td>
<td>500 (5135+/-45 BP)</td>
</tr>
<tr>
<td>AAR-4453 Akerøe</td>
<td>500 (5135+/-50 BP)</td>
</tr>
<tr>
<td>AAR-4452 Akerøe</td>
<td>500 (5120+/-40 BP)</td>
</tr>
<tr>
<td>AAR-6943 Knoebebo</td>
<td>500 (515+/-50 BP)</td>
</tr>
<tr>
<td>AAR-6945 Skovløbbo</td>
<td>500 (5110+/-40 BP)</td>
</tr>
<tr>
<td>AAR-4993 Muldberg I</td>
<td>500 (5050+/-45 BP)</td>
</tr>
<tr>
<td>AAR-3316 Smiekjøp H.</td>
<td>500 (5040+/-60 BP)</td>
</tr>
<tr>
<td>K-5057 Oegaarde</td>
<td>500 (5030+/-90 BP)</td>
</tr>
<tr>
<td>AAR-4994 Muldberg I</td>
<td>500 (5010+/-50 BP)</td>
</tr>
<tr>
<td>AAR-4451 Akerøe</td>
<td>500 (4965+/-45 BP)</td>
</tr>
<tr>
<td>K-4771 Saeverre H.</td>
<td>500 (4960+/-80 BP)</td>
</tr>
<tr>
<td>AAR-5004 Visborg</td>
<td>500 (4955+/-60 BP)</td>
</tr>
<tr>
<td>AAR-5005 Visborg</td>
<td>500 (495+/-55 BP)</td>
</tr>
<tr>
<td>AAR-7054 Bønd A</td>
<td>500 (4920+/-40 BP)</td>
</tr>
<tr>
<td>AAR-2615 Krabbeholm II</td>
<td>4750+/-40 BP</td>
</tr>
<tr>
<td>AAR-22576 Visborg</td>
<td>4750+/-36 BP</td>
</tr>
<tr>
<td>K-4770 Snevefr H.</td>
<td>4770+/-85 BP</td>
</tr>
<tr>
<td>K-5536 Kærup</td>
<td>4770+/-75 BP</td>
</tr>
<tr>
<td>AAR-5006 Visborg</td>
<td>4650+/-55 BP</td>
</tr>
<tr>
<td>K-4879 Kildegaard</td>
<td>4630+/-85 BP</td>
</tr>
<tr>
<td>K-4900 Maglemosegaard</td>
<td>4620+/-60 BP</td>
</tr>
<tr>
<td>K-482 Holmen</td>
<td>4610+/-85 BP</td>
</tr>
<tr>
<td>K-4778 Snødelev Mose</td>
<td>4600+/-90 BP</td>
</tr>
<tr>
<td>K-4770 Oegaarde</td>
<td>4560+/-85 BP</td>
</tr>
<tr>
<td>K-4779 Oegaarde</td>
<td>4510+/-90 BP</td>
</tr>
<tr>
<td>K-5537 Borremose</td>
<td>4525+/-90 BP</td>
</tr>
</tbody>
</table>

Sweden, Scania

<table>
<thead>
<tr>
<th>Ua-1575 Hindbygaarden</th>
<th>500 (5570+/-140 BP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ua-22167 Hindbygaarden</td>
<td>4810+/-60 BP</td>
</tr>
<tr>
<td>Ua-22167 Bunkostrand</td>
<td>4810+/-50 BP</td>
</tr>
<tr>
<td>Ua-1572 Hindbygaarden</td>
<td>4585+/-95 BP</td>
</tr>
<tr>
<td>Ua-3563 Hindbygaarden</td>
<td>4560+/-90 BP</td>
</tr>
</tbody>
</table>

Middle Sweden

<table>
<thead>
<tr>
<th>Ua-1578 Skumbergaberg</th>
<th>5170+/-65 BP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ua-4879 Skumbergaberg</td>
<td>5050+/-50 BP</td>
</tr>
<tr>
<td>Ua-15720 Skumbergaberg</td>
<td>4810+/-75 BP</td>
</tr>
<tr>
<td>Ua-22409 Trossla</td>
<td>5010+/-45 BP</td>
</tr>
<tr>
<td>Ua-22408 Trossla</td>
<td>4955+/-45 BP</td>
</tr>
<tr>
<td>Ua-3248 Stora Karlsoe</td>
<td>4935+/-75 BP</td>
</tr>
<tr>
<td>Ua-3543 Grottan</td>
<td>4700+/-80 BP</td>
</tr>
</tbody>
</table>

Western Sweden

| Ua-3543 Kaneby | 4775+/-95 BP |

Fig. 9.

14C dates of domesticated cattle from Late Ertebølle Culture and Early Neolithic in Southern Scandinavia based on data from Table S6 (Lindqvist and Possnert, 1997; Koch, 1998; Heinemeier and Rud, 1999, 2000; Persson, 1999; Heinemeier, 2002; Hartz and Lübke, 2004; Noe-Nygaard et al., 2005; Price and Gebauer, 2005; Sørensen, 2005; Hallgren, 2008; Hadevik, 2009; Enghoff, 2011).
Their typology and placement within the Early Neolithic I period is supported by several 14C dates from settlement contexts. Generally there is an overlap between three axe types, but the 14C dates support the typology originally proposed by Nielsen (1977) (Fig. 15, Table S9), supported by the fact that flint axe depositions of type 1 have never been found together with type 3, whereas type 2 can be associated with type 3 and thin butted axes (Karsten, 1994). Moreover, the axes are rather densely distributed at inland habitation sites in certain regions with easily-workable arable soils, for example the Fallbygden area, the inner part of Scania, Bornholm, and the northern parts of Funen and Jutland (Fig. 16). The pointed butted flint axes from Southern Norway are probably also connected to the Early Neolithic agrarian expansion (Henningsmoen, 1980; Østmo, 1988; Presch-Danielsen, 1996; Glørstad, 2010, 275). A large and systematic production and distribution of these axes, is revealed by numerous concentrations of pointed butted axes close to the flint mines on Stevns (Fig. 3, nr. 50) in Eastern Zealand, and Södra Sallerup (Fig. 3, nr. 71) in Scania (Mathiassen, 1934: 18ff; Olausson et al., 1980: 183ff). The few 14C dates of charcoal found in the mines at Södra Sallerup suggest systematic flint mining activities from 4000 cal BC onwards (Olausson et al., 1980, 183). Deep mining after flint is a characteristic feature of the Central European Michelsberg Culture (4400–3500 cal BC) (Bostyn and Lanchon, 1992; Collet et al., 2004: 151ff; Grooth et al., 2011: 77ff), we therefore presume that this technical knowhow was introduced to Southern Scandinavia by migrating farmers from Central Europe.

5. Discussion

Our results suggest the appearance of a complete agrarian technology and a quick expansion of farming activities in the whole area of Southern Scandinavia around 4000 cal BC. The speed of the expansion was so rapid that pioneering farmers from Central European must have been involved, because the agrarian evidences supports the introduction of an entire Neolithic package. The reason for the expansion could be a combination of population pressure, and climate change to drier conditions giving better environments for crop growing in the Northern European plains (Leuschner et al., 2002: 703; Gronenborn, 2007: 71; Shennan, 2009, Fig. 11. 14C dates of sheep and goat from Early Neolithic in Southern Scandinavia based on data from Table S7 (Lindqvist and Possnert, 1997; Heinemeier and Rud, 1998, 1999; Hertz and Lübke, 2004; Enghoff, 2011; Sjögren, in press.).

Please cite this article in press as: Sørensen, L., Karg, S., The expansion of agrarian societies towards the north – new evidence for agriculture during the Mesolithic/Neolithic transition in Southern Scandinavia, Journal of Archaeological Science (2012), http://dx.doi.org/10.1016/j.jas.2012.08.042.
(Müller, 2011). Here, natural resources for agricultural activities were previously unexploited.

Another reason for the expansion could be relatively easy access to the best flint mines in Southern Scandinavia. A huge number of the Early Neolithic I inland sites are located on easily-workable arable soils and in close proximity to these mines (Fig. 16).

These pioneering farmers probably consisted of smaller groups. Recently Klassen (2004) and Rowley-Conwy (2011) suggested that they expanded to the north by leap-frog, punctuated or sporadic immigration (Moore, 2001: 395ff). A similar model has been presented by Zilhao (2001: 14180ff), explaining a rapid Neolithic expansion in the Mediterranean. The expansion towards Scandinavia happened so fast and covered areas over land and sea, that boats must have been used as indicated by very early Neolithic agrarian habitations on the islands of Bornholm and Gotland (Lindqvist and Possnert, 1997: 73f; Casati and Sørensen, 2006: 39; Nielsen, 2009: 9f).

During the Early Neolithic period an agrarian way of life was practised on inland sites contemporaneously with hunting and fishing activities which took place on sites near the coast, in fjords or by larger inland lakes. Are we dealing with commuting farmers or with a cultural dualism? The few evidences for the presence of cows, sheep and goats at the coastal or lake sites could be interpreted as initial herding activities by communities that still live as hunter/gatherer/fishers. This interpretation finds support in historical records from South Africa, where hunter–gatherers quickly adopted herding of especially sheep through contact and information exchange with neighboring farmers, and not
necessarily through the integration with farming communities (Xavier et al., 2008: 1ff). However, if hunter-gatherers started to keep domesticated animals all year round, they would have needed to collect huge amounts of winter fodder, thus changing their economic strategy and their way of life. The complexity of agricultural technologies and their application require a long-term experience in order to succeed (Lüning, 2000: 174; Ehrmann et al., 2009: 44ff; Schier, 2009: 15ff).

If these Late Mesolithic/Early Neolithic hunter-gatherers wanted to succeed as farmers, they had to integrate into the agrarian

Fig. 14. Faunal assemblages from coastal, lake shore and inland sites from Early Neolithic II and Middle Neolithic I–II based on data from Table S8 (Madsen et al., 1900; Troels-Smith, 1954; Nobis, 1962; Skaarup, 1973; Mahl, 1975; Madsen, 1978; Johansson, 1979; Andersen, 1981; Rowley-Conwy, 1984; Nyegaard, 1985; Lindqvist and Possnert, 1997; Koch, 1998; Nilsson, 2003; Magnelli, 2007; Skousen, 2008; Enghoff, 2011).

Fig. 15. 14C dates of Early Neolithic contexts containing pointed butted flint axes based on data from Table S9 (Troels-Smith, 1957; Salomonsson, 1970; Liversage, 1992; Koch, 1998; Stafford, 1999; Hallgren, 2008; Hirsch et al., 2008; Rudebeck, 2010; Esben Aarsleff personal commun.).
societies. Recently, Kind (2010: 457) has proposed, that the transition towards agriculture is determined by an intensified social interaction between local hunter-gatherers and pioneering farmers, characterized as the ‘managers of neolithisation’.

Proof of cultural dualism would be the actual record of cereal cultivation at a site which, on every other kind of evidence, was used by hunter-gatherers. The Bjørnholm kitchen midden (Fig. 2, nr. 14) could be one of these sites, because pollen of barley and wheat was found under the neighbouring long barrow (Andersen and Johansen, 1992: 38ff; Andersen, 1992: 59ff). Visborg could be another example, as a burnt layer under the kitchen midden indicates the possible use of the slash and burn method (Andersen, 2008: 69ff) that was probably also applied to seashore vegetation (Karg and Harild, 2009). A clear example of cultural dualism is the extraordinary find of the Dragsholm man (Fig. 3, nr. 45), who was buried in a kitchen midden and equipped as a warrior. He could be a typical representative of a ‘manager of neolithisation’ (Brinch Petersen, 2008: 33ff).

A way of documenting cultural dualism is by applying molecular genetic analysis to human bones. The burial site of Ostorf (Fig. 3, nr. 108) in Northern Germany was originally interpreted as a hunter-gatherer enclave surrounded by agrarian societies, because the individuals had a high intake of aquatic resources (Lübke et al., 2009: 130ff; Schulting, 2011: 21). However, three burials contained bodies with Palaeolithic/Mesolithic haplogroups U5 and U5a, while four other burials contained Neolithic haplogroups J, K and T2e (Bramanti et al., 2009: 139). The individuals at Ostorf illustrate a rare example of hunter-gatherers and possible farmers who might have lived together.

6. Conclusions and perspectives

The hypothesis regarding cultural dualism should be confirmed by 14C dates, stable isotope and molecular genetic analysis. If the DNA influx from pioneering farmers consists of Palaeolithic/Mesolithic haplogroups (D and U4 and U5) representing Central European hunter-gatherers who became farmers, then it will be difficult to detect any differences (Bramanti et al., 2009: 137ff). However, Skoglund et al. (2012: 466ff) was able to extract mtDNA from a female skeleton found in the passage grave Gök 4 in Sweden (Fig. 3, nr. 101). The woman was 14C dated to 4341 ± 44 BP (3090–2889 cal BC. AAR-10235) and carrying haplogroup H, which is currently observed in the Mediterranean area. Furthermore the strontium isotope analyses indicate that she was born in a distance less than 100 km away from the passage grave. The result was interpreted as a large scale migration of Neolithic farmers from...
Southern Europe and creation of retreats with very little integration between migrating farmers and local hunter–gatherers. However, the presence of the Palaeolithic/Mesolithic haplogroup U5 in Denmark during the early Bronze Age, indicates that it is unlikely, that there occurs an abrupt replacement of the Mesolithic hunter–gatherer population with a new Neolithic population in Southern Scandinavia (Melchior et al., 2010: 6). Currently the genetic analysis are pointing in two opposite directions.

Stable isotope analysis on human and animal bones is another method to prove the subsistence economy of populations (Tauber, 1981; Fischer et al., 2007: 2125ff). Marine values of δ13C and δ15N were extracted from Mesolithic hunter–gatherers, while most of the Early Neolithic samples, except one from Sejø (Fig. 3, nr. 49), showed non-marine values. Human bones from the Early Neolithic coastal/kitchen midden sites have not yet been analyzed. The abrupt shift in δ13C values could be interpreted as a deliberately deselection of marine food as a resource (Milner et al., 2004: 9ff; Brinch Petersen and Egeberg, 2009: 563). However, this does not necessarily mean that farmers moved away from the coastal areas, as Funnel Beaker hunting stations are documented for the Early and Middle Neolithic periods (Skaraup, 1973; Eriksson et al., 2008), but it could reflect a possible decline of marine resources.

The agrarian expansion during the Early Neolithic in Southern Scandinavia can, with the help of absolute datings of cereal remains and bones of domestic animals, be characterized as a quick process lasting only a few centuries between 4000 and 3700 cal BC. We conclude that small groups of already experienced farmers migrated by using boats as means of transportation. The reason for the expansion is still uncertain, but a combination of growing population pressure in Middle Neolithic cultures in Central Europe, favourable climatic conditions, and easy accessible flint resources could have motivated some farmers to move north. They brought with them the knowhow of agrarian technology, new material culture and ideology. The question of what happened to the local hunter–gatherers is still open for discussion: maybe they became farmers within one or two generations? This could explain the synchronism of inland and coastal sites, where both agrarian and natural food resources were exploited. Another possibility could be a cultural dualism of pioneering farmers living in inland sites and hunter–gatherers living at the coast and lake shores until the end of the Early Neolithic I period. According to this hypothesis, the local hunter–gatherers would have quickly adopted the new material culture and husbandry, but we observe in many cases a continuous hunter–gatherer lifestyle. Evidence for cultural dualism is recorded at a few hunter–gatherer sites. Both explanations are possible, but currently the archaeological evidences tend to favour a cultural dualism during the earliest part of the Early Neolithic. The transition towards an agrarian way of life in Scandinavia can be interpreted as a complex and continuous process of migration, integration and gradual assimilation of neighbouring farmers and hunter–gatherers.

Acknowledgements

We owe many thanks to Esben Aarsleff from Folkemuseet in Hillerød for allowing us to publish the 14C date from Ullerørgård and to many other colleagues in Denmark, Germany, Sweden, Norway and Great Britain for fruitful discussions. Finally we are grateful for the financial support from the project “Northern Worlds”, National Museum of Denmark, the scholarship of Julie von Müllens Foundation and the Elisabeth Munksgaard Foundation, and the generous grant from the Carlsberg Foundation given to the second author. Allan Hall has revised our English and gave useful comments. Finally we would like to thank the anonymous reviewers, who gave some very relevant comments.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.jas.2012.08.042.

References

Andersen, S., Th, 1995. History of vegetation and agriculture at Hassing Huse Mose, Thy, northwest Denmark, since the Ice Age. Journal of Danish Archaeology 11, 57–79.
Ehrmann, O., Rösch, M., Schier, W., 2009. Experimentelle Rekonstruktion eines jungneolithischen Wald-Feldbaus mit Feuerinsatz – ein multidisziplinäres